Orchestration de
conteneurs:
lllustration avec Kubernetes

Emmanuel Coquery
Fiabilité et sécurité des Applications - Master 2 Technologies de I'Information et Web
Avril 2023



Survol

e Retour sur certaines problématiques autour des
microservices

e QOrchestrateurs

e Focus sur Kubernetes



Retour sur les
microservices

 Application = assemblage de « petits » services

e Microservice :

e processus/périmetre métier (gestion d’'une commande,
des personnel, etc)

e Ou préoccupation transverse (authentification, audit/
supervision, persistance des données, equilibrage de
charge)



Granularite plus fine

 Meilleure possibilités de passage a I’échelle:

e plus de flexibilité pour combiner le passage a I’échelle
horizontal suivants les 3 axes classiques: répartir les
fonctionnalites, paralléliser les calculs indépendants,
distribuer les traitements selon les données

 |Impact des pannes potentiellement réduit

 Plus de déploiements



Complexite de deploiement

e Nombreuses briques a déployer — automatisation
nécessaire

e Automatisation complexe
e Plus de diversité

e Plus de configuration: chague microservice s’adresse a
de nombreux autres



Isolation des conteneurs

e Une couche d’isolation supplémentaire a gérer
* mise en oeuvre de la communication plus complexe
e en particulier entre machines

e gestion des données a conserver apres disparition du
conteneur



Dynamicite des services

* Plus de services sur plus de technologies:
e plus de potentiel de dysfonctionnement
e ¢evolutions plus régulieres

e Un microservice peut étre arrété et replacé plus souvent
* robustesse des clients

e problemes de reconfiguration



Supervision

e Nombreux microservices a surveiller
e | ocalisation des logs
 Exploitation des informations

e |evées d’alertes

e reactions automatisées



Orchestrateurs

e Objectif: aider a la gestion de nombreux déploiements

e indispensables dans le cadre d’une architecture a base
de microservices

* Fournissent des services support pour faciliter la gestion
des microservices



Quelques orchestrateurs de
conteneurs

e docker-compose: surcouche a Docker, simple (mise en place
et appréhension), capacités assez limitéees

* Docker Swarm: gestion de cluster de machines, scaling,
intégré a Docker

e Mesos/Marathon/DCOS: gestion de (tres gros) clusters de
machines, scaling, gestion fine des ressources, templates et
bibliotheques de déploiement

e Kubernetes (k8s): nombreuses fonctionnalités (clusters,
scaling, templates, ressources, stockage), templates et
bibliotheques (via helm), contrdle d’acces



k8s: ressources

e Point de vue générique ce qui est géré par k8s:
e Conteneurs et assimilés
e Stockage (volumes et ressources connexes)
 Réseau (services, load balancer)

o Systeme de labels et de selectors:

e clé/valeur, utilisable comme label ou comme sélecteur
app: cinema

* mini langage de sélecteurs:
environment in (production, ga)
tier notin (frontend, backend)



k8s: utilisation

e Kkubectl: CLI pour gérer le cluster

e Utilise de nombreux fichiers YAML permettant de décrire
les différentes ressources a mettre en place

e Exemple:

kubectl apply -f mondeploiement.yml

/

Description de la ressource a créer / mettre a jour



k8s: exemple de fichier de
ressource

apivVersion: apps/vl # for versions before 1.9.0 use apps/vibetaZ2

kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 2 # tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
— containerPort: 80

https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/


https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/

Orchestration
Deploiement de conteneurs

e Fonctionnalité de base
o Déclaratif

 Sous forme d’un fichier de configuration,
pas une commande avec des options

e Limite la quantité de script pour I’automatisation

 (Gestion de la configuration (environnement, fichiers)



Orchestration
Deploiement de conteneurs: scaling

e Gérer plusieurs conteneurs ayant:
e Méme image
e Méme configuration

e Pouvoir in/décrémenter le nombre de copies
(a.k.a. horizontal scaling)



Orchestration
Déploiement et supervision

e Surpervision simple: etat du conteneur
e en construction, en marche, arréte, etc
e Plus avancé

e e service est-il fonctionnel ?
Un process peut tourner en renvoyer des 503

e Health check: code exécuté pour vérifier le bon fonctionnement du service
— code ad-hoc pour chaque service

e Reéaction

e Que faire si un service est défaillant ?
— Kill/reboot ?



k8s: conteneurs, pods, sets

Encapsulation des conteneurs
* Pods: groupe de conteneurs
* partage de ressources

e démarrage et terminaison
simultanés

e Controleurs
* ensemble de pods
e surveillance, redémarrage
* Replica/Stateful/Daemon Set

* Deployments

Deployment

Pilote

Replica/Stateful Set

Pod Pod

Cont. Cont.



k8s: configuration

e ala Docker: command line, variables d’environnement
e ConfigMap:
e dictionnaire clés-valeurs

e visible comme un répertoire,
clé < fichier

valeur < contenu

* ou visible via des variables d’environnement
e gestion distincte des deployments
e peut étre partagée

e Secrets:

e Similaire a ConfigMap, mais sécurisé



k8s: supervision applicative

e Health checks (probes)
e Readyness / Liveness
o difféerents types de sondes
e commande executée dans le conteneur
e requéte HTTP
e verification port TCP
e succes: code retour =0

e A utiliser avec restartPolicy



Orchestration
Batchs

e Processus a durée de vie limitée

A gros grain, certaines problématiques similaires aux
services

e Supervision
* Relance (partielle) en cas d’échec

e Nécessite parfois un acces privilegié a certains services
— exécution au sein de I’environnement d’orchestration



k8s: Jobs

Possibilité d’avoir plusieurs pods : parallélisme

Redémarrage en cas d’echec,
avec limite sur le nombre d’essais

e Attention a la restartPolicy: OnFailure ou Never
Cron Jobs
TTL Controllers: pour nettoyer les ressources

Pas de systeme type Spring Batch pour redémarrer un job a
mi-chemin



Orchestration
Stockage

e Partage de données entre différents conteneurs
e Persistance des données au dela de la vie des conteneurs

e Utilisation de systemes de stockage externes fiables



k8s: volumes

e Systeme de volumes
* Proche de celui de Docker dans l'usage
e Plus géneérique

e \olume lié a un pod
e méme durée de vie

e montable par les conteneurs du pod
(possibilité de montage partage)



k8s: stockage persistant

e Données a durée de vie plus longue que celle du pod
e PersistentVolume : données

e Hébergée en général sur un systeme tiers
(e.g. Ceph, NFS)

e PersistentVolumeClaim (PVC) : demande d’utilisation des
données (binding)

e Utilisation dans un pod: création d’un volume basé sur un certain
PVC

e Peut étre créé a la demande lors d’un déploiement de Stateful Set



Orchestration
Réseau et APl Management

 Pouvoir questionner I'orchestrateur pour savoir qui fait
quoil

e Fourniture de services réseau support
e |Ps virtuelles

e DNS

e |ntégration de reverse proxies / de load balancers



k8s: services

Client externe

_ . , Service
e Points d’acces virtuel pour un

XXX Set

e Peut intégrer un load balancer

 Permet d’offrir un point
d’acces depuis I'extérieur du
cluster

Replica / Stateful Set




k8s: dns

e Plugin pour déployer un DNS interne:
e Adresse pour chague pod

e Adresse pour chague service



Orchestration
Securité et isolation

Organisation des services en espaces logiques
Possibilités d’isolation reseau
Utilisateurs multiples et droits associés

Limites imposées par pod/set/namespace



k8s: utilisateurs

 Deux types: humains vs pods (User vs ServiceAccount)

e Authentification: mécanismes varies,
possibilité d’injection par secret pour les ServiceAccounts

e Systemes d’autorisations variés: RBAC, ABAC, etc



k8s: iIsolation réseau

e Network Policies
e Permet de restreindre I’acces a certains pods
e trafic entrant et/ou sortant

e pods/namespaces/ips



k8s: limitations de
ressources

e Possibilité de limiter les ressources associées a un pod
 Bonne pratique: toujours fixer des limites CPU/RAM

e systeme de ressources ouvert, e.g.
limits:
nvidia.com/gpu: 1 # requesting 1 GPU



