
Orchestration de
conteneurs: 

Illustration avec Kubernetes
Emmanuel Coquery 

Fiabilité et sécurité des Applications - Master 2 Technologies de l’Information et Web 
Avril 2023

Survol

• Retour sur certaines problématiques autour des
microservices

• Orchestrateurs

• Focus sur Kubernetes

Retour sur les
microservices

• Application = assemblage de « petits » services

• Microservice :

• processus/périmètre métier (gestion d’une commande,
des personnel, etc)

• ou préoccupation transverse (authentification, audit/
supervision, persistance des données, équilibrage de
charge)

Granularité plus fine

• Meilleure possibilités de passage à l’échelle:

• plus de flexibilité pour combiner le passage à l’échelle
horizontal suivants les 3 axes classiques: répartir les
fonctionnalités, paralléliser les calculs indépendants,
distribuer les traitements selon les données

• Impact des pannes potentiellement réduit

• Plus de déploiements

Complexité de déploiement

• Nombreuses briques à déployer → automatisation
nécessaire

• Automatisation complexe

• Plus de diversité

• Plus de configuration: chaque microservice s’adresse à
de nombreux autres

Isolation des conteneurs

• Une couche d’isolation supplémentaire à gérer

• mise en oeuvre de la communication plus complexe

• en particulier entre machines

• gestion des données à conserver après disparition du
conteneur

Dynamicité des services
• Plus de services sur plus de technologies:

• plus de potentiel de dysfonctionnement

• évolutions plus régulières

• Un microservice peut être arrêté et replacé plus souvent

• robustesse des clients

• problèmes de reconfiguration

Supervision

• Nombreux microservices à surveiller

• Localisation des logs

• Exploitation des informations

• levées d’alertes

• réactions automatisées

Orchestrateurs

• Objectif: aider à la gestion de nombreux déploiements

• indispensables dans le cadre d’une architecture à base
de microservices

• Fournissent des services support pour faciliter la gestion
des microservices

Quelques orchestrateurs de
conteneurs

• docker-compose: surcouche à Docker, simple (mise en place
et appréhension), capacités assez limitées

• Docker Swarm: gestion de cluster de machines, scaling,
intégré à Docker

• Mesos/Marathon/DCOS: gestion de (très gros) clusters de
machines, scaling, gestion fine des ressources, templates et
bibliothèques de déploiement

• Kubernetes (k8s): nombreuses fonctionnalités (clusters,
scaling, templates, ressources, stockage), templates et
bibliothèques (via helm), contrôle d’accès

k8s: ressources
• Point de vue générique ce qui est géré par k8s:

• Conteneurs et assimilés

• Stockage (volumes et ressources connexes)

• Réseau (services, load balancer)

• Système de labels et de selectors:

• clé/valeur, utilisable comme label ou comme sélecteur 
app: cinema

• mini langage de sélecteurs: 
environment in (production, qa) 
tier notin (frontend, backend)

k8s: utilisation

• kubectl: CLI pour gérer le cluster

• Utilise de nombreux fichiers YAML permettant de décrire
les différentes ressources à mettre en place

• Exemple: 
 
kubectl apply -f mondeploiement.yml

Description de la ressource à créer / mettre à jour

k8s: exemple de fichier de
ressource

apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2
kind: Deployment
metadata:
 name: nginx-deployment
spec:
 selector:
 matchLabels:
 app: nginx
 replicas: 2 # tells deployment to run 2 pods matching the template
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.7.9
 ports:
 - containerPort: 80

https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/

https://kubernetes.io/docs/tasks/run-application/run-stateless-application-deployment/

Orchestration 
Déploiement de conteneurs

• Fonctionnalité de base

• Déclaratif

• Sous forme d’un fichier de configuration, 
pas une commande avec des options

• Limite la quantité de script pour l’automatisation

• Gestion de la configuration (environnement, fichiers)

Orchestration 
Déploiement de conteneurs: scaling

• Gérer plusieurs conteneurs ayant:

• Même image

• Même configuration

• Pouvoir in/décrémenter le nombre de copies 
(a.k.a. horizontal scaling)

Orchestration 
Déploiement et supervision
• Surpervision simple: état du conteneur

• en construction, en marche, arrêté, etc

• Plus avancé

• Le service est-il fonctionnel ? 
Un process peut tourner en renvoyer des 503

• Health check: code exécuté pour vérifier le bon fonctionnement du service 
→ code ad-hoc pour chaque service

• Réaction

• Que faire si un service est défaillant ? 
→ kill/reboot ?

k8s: conteneurs, pods, sets
Encapsulation des conteneurs

• Pods: groupe de conteneurs

• partage de ressources

• démarrage et terminaison
simultanés

• Contrôleurs

• ensemble de pods

• surveillance, redémarrage

• Replica/Stateful/Daemon Set

• Deployments

Cont.

Cont.

Cont.

Cont.

Pod Pod

Replica/Stateful Set

Deployment

Pilote

k8s: configuration
• à la Docker: command line, variables d’environnement

• ConfigMap:

• dictionnaire clés-valeurs

• visible comme un répertoire,  
clé ↔ fichier 
valeur ↔ contenu

• ou visible via des variables d’environnement

• gestion distincte des deployments

• peut être partagée

• Secrets:

• Similaire à ConfigMap, mais sécurisé

k8s: supervision applicative
• Health checks (probes)

• Readyness / Liveness

• différents types de sondes

• commande exécutée dans le conteneur

• requête HTTP

• vérification port TCP

• succès: code retour = 0

• À utiliser avec restartPolicy

Orchestration 
Batchs

• Processus à durée de vie limitée

• À gros grain, certaines problématiques similaires aux
services

• Supervision

• Relance (partielle) en cas d’échec

• Nécessite parfois un accès privilégié à certains services 
→ exécution au sein de l’environnement d’orchestration

k8s: Jobs
• Possibilité d’avoir plusieurs pods : parallélisme

• Redémarrage en cas d’échec,  
avec limite sur le nombre d’essais

• Attention à la restartPolicy: OnFailure ou Never

• Cron Jobs

• TTL Controllers: pour nettoyer les ressources

• Pas de système type Spring Batch pour redémarrer un job à
mi-chemin

Orchestration 
Stockage

• Partage de données entre différents conteneurs

• Persistance des données au delà de la vie des conteneurs

• Utilisation de systèmes de stockage externes fiables

k8s: volumes
• Système de volumes

• Proche de celui de Docker dans l’usage

• Plus générique

• Volume lié à un pod

• même durée de vie

• montable par les conteneurs du pod  
(possibilité de montage partagé)

k8s: stockage persistant
• Données à durée de vie plus longue que celle du pod

• PersistentVolume : données

• Hébergée en général sur un système tiers  
(e.g. Ceph, NFS)

• PersistentVolumeClaim (PVC) : demande d’utilisation des
données (binding)

• Utilisation dans un pod: création d’un volume basé sur un certain
PVC

• Peut être créé à la demande lors d’un déploiement de Stateful Set

Orchestration 
Réseau et API Management

• Pouvoir questionner l’orchestrateur pour savoir qui fait
quoi

• Fourniture de services réseau support

• IPs virtuelles

• DNS

• Intégration de reverse proxies / de load balancers

k8s: services

• Points d’accès virtuel pour un
XXX Set

• Peut intégrer un load balancer

• Permet d’offrir un point
d’accès depuis l’extérieur du
cluster

Service

Pod Pod

Replica / Stateful Set

Client externe

Pod

k8s: dns

• Plugin pour déployer un DNS interne:

• Adresse pour chaque pod

• Adresse pour chaque service

Orchestration 
Sécurité et isolation

• Organisation des services en espaces logiques

• Possibilités d’isolation réseau

• Utilisateurs multiples et droits associés

• Limites imposées par pod/set/namespace

k8s: utilisateurs

• Deux types: humains vs pods (User vs ServiceAccount)

• Authentification: mécanismes variés, 
possibilité d’injection par secret pour les ServiceAccounts

• Systèmes d’autorisations variés: RBAC, ABAC, etc

k8s: isolation réseau

• Network Policies

• Permet de restreindre l’accès à certains pods

• trafic entrant et/ou sortant

• pods/namespaces/ips

k8s: limitations de
ressources

• Possibilité de limiter les ressources associées à un pod

• Bonne pratique: toujours fixer des limites CPU/RAM

• système de ressources ouvert, e.g.

 limits:
 nvidia.com/gpu: 1 # requesting 1 GPU

